Alkyl Halides

Alkyl Halides (RX)—compounds with a halogen bonded to a saturated carbon (sp ${ }^{3}$ hybridized carbon).

Nomenclature
Alkyl halides are named in the same way as alkanes. Treat the halogen as a substituent on the alkane parent chain.

2-chloropentane

Reactions to Know

Synthesis of Alkyl Halides
You learned in chapter 5 how to make an alkyl halide by a radical reaction between a halogen and an alkane in uv light.

1. From Alkenes by Allylic Bromination:

Allylic Bromination with NBS is analogous to the radical reaction with an alkane, a halogen and uv light (Ch. 5). The NBS can be thought of as producing a Br radical. The Br radical removes a hydrogen, leaving an allylic radical and forming HBr . This allylic radical reacts with Br_{2} (which is formed from NBS reacting with the HBr formed from the removal of a hydrogen from the alkene) to give the product.

Why does the reaction only occur at the allylic position?
Allylic radicals are more stable than alkyl or vinylic radicals:
Stability of Radicals

Allylic radicals are so stable because they are resonance stabilized.
Because the allylic radical is more stable, it has a lower energy of activation and more collisions per unit of time result in a successful reaction at the allylic position.
2. From Alkenes (Chapters 6 \& 7):

3. From Alcohols (a):

You'll learn the mechanism for this reaction in Ch. 11.
4. From Alcohols (b):

Practice Problems

1)

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CHCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3} \xrightarrow{\mathrm{NBS}}$?
Answer
2)
$?+\mathrm{SOCl}_{2} \longrightarrow$

Answer
Reactions of Alkyl Halides

1) Organometallic Reactions-Formation of Gilman Reagents
a. General Reaction:

$$
\mathrm{RX}+2 \mathrm{Li} \longrightarrow \mathrm{R}^{\delta+} \mathrm{Li}^{\delta-}+\mathrm{LiBr}
$$

Example:
$\mathrm{H}_{3} \mathrm{C}-\mathrm{Br}+2 \mathrm{Li} \longrightarrow \mathrm{CH}_{3}{ }^{\delta-} \mathrm{Li}^{\delta+} \quad \mathrm{LiBr}$
b. General Reaction:

Gilman Reagent
Example:

2) Corey-House (Formation of Gilman Reagent)

General Reaction:
$\mathrm{R}_{2} \mathrm{Cu}^{-} \mathrm{Li}^{+}+\mathrm{R}^{\prime} \mathrm{X} \xrightarrow{\text { ether }} \mathrm{R}^{\prime} \mathrm{R}+\mathrm{LiX}+\mathrm{RCu}$

Example:

This reaction is useful because it forms new carbon-carbon bonds, lengthening the carbon chain. The alkyl halide loses a halogen and gains the alkyl group from the Gilman Reagent.
3) Formation of Grignard Reagent

General Reaction:
$\mathrm{RX}+\mathrm{Mg} \xrightarrow{\text { ether }} \mathrm{RMgX}$
Example:

Like Gilman Reagents, Grignard Reagents are useful because they can be used to lengthen a carbon chain. You'll study Grignard reagents and the reactions they are involved in during the second semester of organic chemistry.

Practice Problems

3)

Prepare:

4)

Prepare:

From: $\mathrm{ClCH}_{2} \mathrm{CH}_{3}$ and any other needed reagents

Answer
1)

Return to Problem

Answer

2)

$? \quad+\mathrm{SOCl}_{2} \longrightarrow$

Return to Problem

Answer

3)

Prepare:

Return to Problem

Answer

4)

Prepare:

From: $\mathrm{ClCH}_{2} \mathrm{CH}_{3}$ and any other needed reagents

Return to Problem

